
FEATURE ARTICLE

Ab Initio Calculations of Vibronic Spectra and Dynamics for Small Polyatomic Molecules:
Role of Duschinsky Effect
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The Duschinsky effect has been shown to be significant in spectroscopy and dynamics of molecules that
involve theπ-π* transitions. In this paper, we present a derivation of exact expressions for optical absorption
and radiationless transitions in polyatomic molecules with displaced-distorted-rotated harmonic potential
surfaces. In the formulation, we take into account the temperature effect exactly. The application of this new
formulation is demonstrated for ethylene and allene, where the Duschinsky effect in the first singlet excited
electronic state is very strong.

I. Introduction

Ab initio molecular orbital (MO) calculations of potential
energy surfaces (PES) for excited electronic states are increas-
ingly becoming a powerful tool in studies of molecular
spectroscopy and photochemistry.1 Accurate calculation of the
excited-state surfaces is a complex task that requires the use of
advanced ab initio methods such as the multiconfigurational
complete active space SCF (CASSCF)2 or the equation-of-
motion coupled cluster (EOM-CCSD)3 methods for geometry
optimization and vibrational frequency calculations and the
multireference configuration interaction (MRCI) method4 or
multiconfigurational perturbation theory (CASPTn, CASMPn)5

for refinement of energies. Most theoretical studies of excited
electronic states reported in the literature consider only vertical
excitation energies in the Franck-Condon region. However,
behavior of excited states beyond this region is relevant to the
spectroscopy and dynamics of photochemical reactions.

An ab initio approach for the calculations of vibronic spectra
for polyatomic molecules includes accurate calculations of
potential energy surfaces for the ground and excited states,
which provide the information about vertical and adiabatic
excitation energies, oscillator strengths for various transitions,
equilibrium geometries, vibrational frequencies, and normal
coordinates for the ground and excited states, transition matrix
elements, etc. Such information allows us to compute the
positions and intensities (Franck-Condon factors) of various
peaks in vibronic spectra using the harmonic approximation for
nuclear motion. A common feature of most spectral intensity
calculations for polyatomic molecules is the use of ad hoc model
potentials that include one or two degrees of freedom. A more
general approach would be to compute the Franck-Condon
factors from first principles, i.e., from the potential energy
surfaces of the ground and excited states obtained by ab initio
MO calculations. The complexity of such an approach owes
itself to the fact that in an excited state the normal modes can
often be not only displaced and distorted but also mixed with

each other, which makes the calculations of the vibrational
overlap integrals between the ground and excited-state normal
coordinates nontrivial. Here, normal mode displacement means
a geometry change from the ground to excited state, i.e.,
displacement of the position of a local minimum on the potential
energy surface, distortion corresponds to a change of vibrational
frequencies reflecting a change of the surface shape, and normal
mode mixing or rotation is alteration of the character of normal
modes after electronic excitation.

The mode mixing in the excited electronic state with respect
to the ground state was first described6 by a Russian scientist
in 1937 and is generally called the Duschinsky effect. This
phenomenon is recognized as one of the main reasons for
dissymmetry between absorption and emission spectra. It is also
responsible for the appearance in the spectra of combined
transitions due to normal modesX andY where only modeX is
optically active andY is mixed withX in the excited state. In
general, the Duschinsky effect scrambles the occupation of the
normal modes, leading to unusual intensity distributions. The
phenomenon of mode mixing has been observed in the absorp-
tion and emission spectra of many organic molecules such as
benzene,7 naphthalene,8 R- andâ-methylnaphthalenes,9 phenan-
threne,8 pyridine,10 azulene and azaazulenes,11-13 styrene,14

benzyl radical,15 N,N′-dicyanoquinodiimines,16 1,3,5-tri-tert-
butylpentalene,17 2-phenylindole,18 o-difluorobenzene,19 ethy-
nylbenzene (phenylacetylene),20,21 tetracyanoquinodimethane
anion (TCNQ-) and naphthalene cation,22 anthracene,23 blue
copper proteins,24 etc. For symmetry-allowed electronic transi-
tions, the Duschinsky effect can be studied from the different
intensity distributions displayed in absorption and emission and
from the presence of combination bands revealed by single
vibronic level excitation spectroscopy. For example,25 the single
level fluorescence (SVLF) spectra ofcis-2-methoxynaphthalene
reveal strong vibrational mixing in the S1 state and could be
assigned on the basis of the Duschinsky rotation. In molecules
with a symmetry-forbidden electronic transition, such as ben-
zene,7 the amount of mode rotation in this state can be detected
by examining the two-photon excitation spectra of several
deuterated isotopomers.
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The Duschinsky effect can play a role not only in the
absorption, emission, and fluorescence spectra but also in the
resonance Raman spectra26-28 (influence on the nonlinear optical
susceptibilities and coherent line shapes in large molecules) and
sum frequency generation (SFG) spectra from adsorbed mol-
ecules.29 The mode mixing can affect the rates of internal
conversion between different electronic states through alteration
of the Franck-Condon factor (vibrational part of the rate
constant).1,30,31The structural and dynamical consequences of
the rotational Duschinsky effect on rotationally resolved fluo-
rescence excitation spectra have been also reported.32

A classical example of the Duschinsky effect is found in
interpretation of the absorption spectra forcis- and trans-
hexatriene.33,34Although the two isomers are very similar, their
ultraviolet absorption spectra corresponding to the1B1 r 1A1

and1Bu r 1Ag transitions to the S2 state are markedly different.
For instance, the intensity of the first intense band is lower for
cis-hexatriene than for thetrans-hexatriene; the intensity of
subsequent vibronic peaks is redistributed in the direction of
larger energies, indicating a larger distortion of the cis isomer
after electronic excitation. The total width of the cis isomer
spectrum is larger, the peaks are markedly broader, and several
shoulders are much more marked in the cis hexatriene spectrum.
Petelenz and Petelenz35 first gave a theoretical explanation of
this phenomenon based on the Duschinsky effect. They con-
sidered a simple model taking into account three normal modes
corresponding to a double CC bond stretching motion, a single
CC bond stretching mode, and a central bond bending mode.
They wrote model vibrational Hamiltonians for the ground and
excited states of the trans and cis isomers. Because of a steric
hindrance incis-hexatriene, the normal modes are mixed in the
excited state of this isomer. This results in intensity redistribution
of vibronic peaks and the broader and more complicated
character of the absorption spectrum forcis-hexatriene compared
to that for trans-hexatriene. Hemley et al.36 carried out a
theoretical analysis of the absorption spectra for the two isomers
using the semiempirical extended PPP-CI approach. They
analyzed in detail for both isomers the vibrational structure in
the excited state, including frequency shifts from the ground
state and Duschinsky mixing. Indeed, the mixing appeared to
be heavier in thecis-structure than in thetrans-hexatriene.
Hemley et al.36 have also concluded that the differences in the
spectra are related to the differences in the excited-state
geometries: planar configuration for trans and a geometry that
is slightly twisted about the central bond for cis. Zerbetto and
Zgiersky37 returned to the analysis of the spectra forcis- and
trans-hexatriene using the ab initio CIS method. The Duschinsky
rotational matrices computed at this level are in qualitative
agreement with the findings of Hemley et al.,36 although ab initio
values tend to provide a picture of more drastic rotations. In
general, ab initio calculations give the calculated spectra in
satisfactory agreement with experimental absorption spectra of
the two isomers of hexatriene.

The calculations of vibronic peak intensities taking into
account the Duschinsky effect require computations of multi-
dimensional vibrational overlap integrals, which are of formi-
dable analytical complexity and cannot be represented as simple
products of one-dimensional integrals. One of the first attempts
of a quantitative analysis of this problem was made by Coon,
DeWames, and Loyd38 who suggested an approximate method
for calculating two-dimensional integrals specifically for non-
linear triatomic systems. Atabek, Bourgeois, and Jacon com-
puted Franck-Condon factors taking into account two-mode
mixing for a special case of symmetric triatomic molecules,
ABA.39 The calculations were applied to the studies of isotope

effects in the photofragmentation of triatomic molecules where
the initial vibrational energy content was related to the dis-
sociation cross sections and branching ratios measuring the
competition between different isotope fragmentation arrange-
ments. The same approach was applied to the study of the
absorption and fluorescence spectra of ozone40 where the
Duschinsky effect originates from the coupling of bending and
stretching motions in the excited state. Recently, Smith41

analyzed the effect of strong Duschinsky mixing of two normal
coordinatesQ1 andQ2 on the intensity in nontotally symmetric
vibrations in electronic spectra. He used a Fermi resonance type
theory and derived the expressions for the intensity of transitions
such as 10

1 21
0 and 10

1 20
1, which gain significant intensity when

mixing of coordinates is strong. The results were applied to the
electronic spectra of styrene, tropolone, and 1,4-benzodioxan,
which provide examples of strong mixing between a pair of
normal coordinates.

Sharp and Rosenstock42 as well as Smith and Warsop43

developed a more general approach in which a generating
function was derived and the Franck-Condon integrals are
obtained as coefficients in the expansion of this function in a
multiple-power series of dummy variables. In this way they were
able to determine relative probabilities of transitions starting
from the vibrationless level of the ground electronic state to
overtones and to some low combination levels of an excited
electronic state. The method of Sharp and Rosenstock is a direct
expansion of the method used by Hutchisson44 for the one-
dimensional case, and it provides an expression from which one
can evaluate the individual Franck-Condon factors by a finite
series expansion. The generating function technique was also
used by Karplus and Warshal45,46 to study vibronic spectra of
conjugated hydrocarbons. The coherent-state method of Dok-
torov et al.47,48gave the same expressions as the method of Sharp
and Rosenstock;42 however, they additionally provided some
recurrence relations for the two- and multidimensional Franck-
Condon integrals. The coefficients in these recurrence equations
were given explicitly forN ) 2 only. Doktorov et al. applied
their method to analyzing the intensity distribution of single
mode progressions in the1B2u r 1A1g electronic transition in
benzene. Kupka and Cribb49 continued the development of the
generating function method and derived the multidimensional
integrals by means of a multivariable generating function that
incorporates both the transformation of the normal coordinates
between two electronic states and their frequency changes. With
the help of this generating function, 2N recurrence equations
(i.e., one recurrence equation for each of the excited and ground
state occupation numbers) were derived. The solution of these
equations for three vibrational degrees of freedom was given
and applied to resonance Raman scattering. The results dem-
onstrated that the corresponding cross section is strongly affected
by mode mixing.

Another approach to compute polyatomic Franck-Condon
integrals has been suggested by Faulkner and Richardson.50 They
used contact transformation perturbation theory to construct the
vibrational wave functions of an excited state in terms of the
vibrational wave functions of the ground state. Then the
calculation of multidimensional vibrational overlap integrals is
reduced to the evaluation of vibrational matrix elements
exclusively within the ground-state vibrational manifold. How-
ever, this method is unsuccessful because of the slow conver-
gence of the perturbation expansion.50,51 Another method
developed by the same authors50 used a linear transformation
of the normal coordinates to remove the Duschinsky rotation.
The multidimensional Franck-Condon integrals are then ex-
pressed as sums of factorizable integrals in the new intermediate
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nuclear coordinates. This method has better computational
efficiency than the perturbation method but is restricted to the
zero-temperature limit. O¨ zkan52 has employed the operator
technique to calculate matrix elements between shifted and
distorted harmonic oscillator functions (which can be associated
with one or two distinct electronic states) and derived some
recurrence relations for one, two, and three oscillators. More
recently, Chen et al.53 have transformed the two-dimensional
Franck-Condon integrals into a separable form, but the resulting
expression contains infinite expansions over the associated
Laguerre polynomials, and integration over the normal coordi-
nates remains unevaluated. A new approximate method for
indirect calculations of the superposition integrals of the
vibrational wave functions of the combined electronic states
based on the variational solution of the vibrational problem in
the excited state was proposed in 1995 by Baranov and
Zelentsov.54

Most of the practical applications to the studies of vibronic
spectra for polyatomic molecules taking into account the
Duschinsky effect are based on the semiempirical or molecular
mechanics calculations of the normal coordinates in the ground
and excited electronic states and on the method of Sharp and
Rosenstock42 to compute the Franck-Condon factors. For
instance, Hemley et al.14 carried out theoretical vibrational
analysis of the UV spectrum of styrene using the extended PPP-
CI method, which computes the ground and lowest excited
singlet states of this molecule. As mentioned above, the same
group used a similar approach to study the vibronic spectra of
cis- and trans-hexatriene.36 Zerbetto and Zgiersky are particu-
larly active in this field; they employed the QCFF-PI and
CNDO/S+CISD method to investigate the spectroscopic be-
havior of various polyenes such as anthracene, nystatin, and
butadiene.55-57 More recent applications based on semiempirical
potential energy surfaces include the calculation of the Duschin-
sky effect in phenol by Venuti and Marconi58 and the study of
1,3,5-tri-tert-butylpentalene by Falchi et al.17 Studies based on
ab initio potential energy surfaces have appeared only recently
and are still rare. Chau et al.59 studied the vibrational structure
of the He I photoelectron spectrum of H2Se based on the high-
level CCSD(T) geometry optimization and harmonic vibrational
frequency computation and used Chen’s method60 to compute
the Franck-Condon factors. Crane et al.61 carried out the
vibrational assignment of the S1 fluorescence excitation spectrum
of formyl fluoride also using high-level ab initio potential energy
surfaces. The Franck-Condon factors were calculated with
account of the Duschinsky rotation using the computer program
of Chen,62 which implements the method of Sharp and Rosen-
stock.42

Recently,63,64 we derived a closed-form expression for the
four-dimensional vibrational overlap integral that is evaluated
in terms of products of Hermite polynomials. The expression
is valid for the case of the vibrationless ground electronic state
and takes into account distortion, displacement, and normal
mode mixing (up to four modes). We applied this approach to
compute theπ-π* vibronic spectrum of ethylene based on the
ab initio potential energy surfaces for this molecule in the ground
1Ag and excited1B1u electronic states. The geometry of C2H4

changes significantly in theπ-π* state by twisting the CH2
groups by 90°. This leads to heavy mixing of four normal modes
of “a” symmetry within theD2 point group common for the
ground (D2h) and excited (D2d) state geometries. The ab initio
calculations of Franck-Condon factors taking into account the
Duschinsky effect allowed us to interpret major features of the
experimental spectrum of ethylene and showed that theπ-π*
transition is responsible for the broad continuous distribution

between 5.6 and 11 eV (underlying continuum). The role of
Duschinsky mixing is crucial; it makes the spectrum broad and
dense.

We used a similar ab initio approach to calculate vibronic
spectra of various polyatomic molecules and radicals such as
CH4,65 CH3,66 C2H3,67 C3H2,68,69 and (CH3)2CO.70 Our studies
show that the normal mode rotation is significant in methane
and vinyl radical. All nine normal coordinates are mixed in the
S1 r S0 electronic transition of CH4, and the absorption
spectrum consists of a broad and almost featureless band
between 8.3 and 11.3 eV.65 In the 12A′′ r 12A′ transition of
the vinyl radical the mode mixing is not so heavy and the
vibronic spectrum reveals distinct features.67 The Duschinsky
effect leads to a redistribution of intensities for various vibronic
peaks. For all the molecules we studied, the ab initio calculated
vibronic spectra are in good agreement with experimental data.

The normal mode rotation also plays a role in radiationless
transitions between different electronic states, since the expres-
sions for the rate constants of internal conversion (IC) and
intersystem crossing (ISC) contain a vibrational part (Franck-
Condon factor).71-74 We considered30 the case when several
accepting normal modes are mixed with each other and derived
explicit expressions for the IC rates, taking into account the
displacements, distortions of normal modes, and the Duschinsky
effect for the case of the vibrationless initial electronic state (T
) 0). We demonstrated the effect of rotated normal modes on
the IC rate constants on the basis of a model consisting of one
promoting and two mixed accepting modes. The technique was
applied to calculate the rate of internal conversion between the
excited singletπ-π* and ground electronic states in ethylene.30

In combination with accurate ab initio potential energy
surfaces, precise calculations of Franck-Condon factors for the
general case of displaced, distorted, and rotated normal modes
and nonzero temperature would be an invaluable tool for
theoretical studies of vibronic spectra, electronic relaxation, and
photodissociation dynamics. Recently,75 in this group a new
closed-form expression for the Franck-Condon integrals for
overlap between arbitrary multidimensional harmonic oscillators
was exactly derived. Some simple rules were deduced whereby
an arbitrary multidimensional Franck-Condon integral〈ν1...νN|
ν1′...νN′〉 can be expressed as a sum of products of Hermite
polynomials.

In this article, we present a derivation of exact expressions
for optical absorption and radiationless transitions in polyatomic
molecules with displaced-distorted-rotated harmonic potential
surfaces. The application of this new theory is demonstrated
for ethylene, where the Duschinsky effect in the first singlet
excited electronic state is very strong. It can be expected that
the Duschinsky effect would be very significant for theπ-π*
transitions of polyatomic molecules. It should be emphasized
that the calculations of absorption spectra and radiationless
transitions are based on the potential surfaces obtained from ab
initio calculations.

II. Theory

Spectroscopy.The absorption coefficient for the electronic
transition af b in the Condon approximation can be expressed
as

which can be rewritten as

R(ω) )
4π2ω

3pc
|µbba|2∑

V
∑
V′

PaV|〈ΘbV′|ΘaV〉|2 δ(ωbV′,aV-ω) (1)
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Here,G(t) denotes the correlation function and is given by

Let us consider the general case; that is, a molecular system
consists ofNd modes exhibiting the Duschinsky effect andN
modes without mode-mixing. In this case,G(t) can be written
as

where G12...Nd(t) and Gl(t) denote the correlation functions
defined by

and

That is, G12...Nd(t) represents the correlation function of the
mixing modes (i.e., the Duschinsky effect).

Making use of the Slater sum (see eq A4 in Appendix A),
we obtain

whereâj ) ωj/p, âR ) ω′R/p, λj ) itωj + pωj/(kT), µR ) -itω′R,
and

for R ) R1, ..., RNd. It follows that

where

and

Some of the particular cases are given in Appendix A.
Next we shall calculateGi(t) given by eq 5 for the displaced

and distorted harmonic oscillator case. It is given by

Dynamics. The rate of internal conversion (IC) for the
electronic transition bf a in the Condon approximation can
be expressed as72

R(ω) ) 2πω
3pc

|µbba|2∫-∞

∞
dt eit(ωba-ω) G(t) (2)

G(t) ) ∑
V
∑
V′

PaV|〈ΘbV′|ΘaV〉|2 exp[itp(EbV′ - EaV)] (3)

G(t) ) G12...Nd
(t) ∏

l

l*1,2...Nd

Gl(t) (4)

Gl(t) ) ∑
Vl

∑
V′l

PaVl
|〈øbV′l

(Q′l)|øaVl
(Ql)〉|2 exp[it{(V′l +

1

2)ω′l -

(Vl +
1

2)ωl}] (5)

G12...Nd
(t) ) ∑

V1

...∑
VNd

∑
V′Rl

...∑
V′RNd

PaV1...VNd
|〈øbV′Rl

(Q′Rl
)...øbV′RNd

(Q′RNd
) ×

|øaV1
(Q1)...øaVNd

(QNd
)〉|2 exp[it{ ∑

R)R1

RNd (V′R +
1

2)ω′R -

∑
j)1

Nd (Vj +
1

2)ωj] (6)

G12...Nd
(t) ) ∏

j)1

Nd {2xâj sinh
pωj

2kT

x2π sinhλj
}∏

R)R1

RNd { xâ′R

2π sinhµ′R
} ×

∏
j)1

Nd

{∫-∞

∞
dQj ∫-∞

∞
dQh j} exp[-∑

j)1

Nd âj

4{(Qj + Qh j)
2 tanh

λj

2
+

(Qj - Qh j)
2 coth

λj

2}] exp[- ∑
R)R1

RNd â′R

4 {(Q′R + Qh ′R)2 tanh
µ′R

2
+

(Q′R - Qh ′R)2 coth
µ′R

2 }] (7)

Q′R ) ∑
j)1

Nd

CRj(Qj + ∆Qj) (8)

G12...Nd
(t) ) e-D ∏

j)1

Nd {2xâj sinh
pωi

2kT

x2π sinhλi
} ×

∏
R)R1

RNd { xâ′R

x2π sinhµ′R}∏
j)1

Nd

{∫-∞

∞
dQj ∫-∞

∞
dQh j} ×

exp[-∑
j)1

Nd

Ajj(Qj + Qh j)
2 - ∑

j)1

Nd

∑
k>j

Nd

Ajk(Qj + Qh j)(Qk + Qh k)] ×

exp[-∑
j)1

Nd

Aj(Qj + Qh j)] exp[-∑
j)1

Nd

Bjj(Qj - Qh j)
2 -

∑
j)1

Nd

∑
k>j

Nd

Bjk(Qj - Qh j)(Qk - Qh k)] (9)

Ajj )
âj

4
tanh

λj

2
+ ∑

R)R1

RNd â′R

4
tanh

µ′R

2
(Caj)

2 (10)

Ajk ) ∑
R)R1

RNd â′R

2
tanh

µ′R

2
CRjCRk (11)

Aj ) ∑
R)R1

RNd

∑
k)1

Nd

â′R tanh
µ′R

2
CRjCRk∆Qk (12)

Bjj )
âj

4
coth

λj

2
+ ∑

R)R1

RNd â′R

4
coth

µ′R

2
(CRj)

2 (13)

Bjk ) ∑
R)R1

RNd â′R

2
coth

µ′R

2
CRjCRk (14)

D ) ∑
R)R1

RNd

â′R tanh
µ′R

2
(∑

j)1

Nd

CRj∆Qj)
2 (15)

Gl(t) )
2âlâ′l sinh

pωl

2kT

x(âl tanh
λl

2
+ â′l tanh

µ′l
2)(âl coth

λl

2
+ â′l coth

µ′l
2)

×

exp[-
âlâ′l∆Ql

2

âl coth
µ′l
2

+ â′l coth
λl

2
] (16)

W )
2π

p
|Rp(ba)|2∑

V
∑
V′

PbV′|〈ΘbV′| ∂

∂Qp
|ΘaV〉|2 δ(EbV′-EaV)

(17)
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where

Here, for simplicity it is assumed that only one promoting mode
Qp is responsible for IC. Note that

where

Here,Gh (t) in eq 19 is equivalent toG(t) without the promoting
mode contribution. The other difference betweenGh (t) andG(t)
is that the initial and final vibronic states should be reversed.

It should be noted thatKp(t) can be expressed as

whereGp(t) is given by exchangingλl, µ′l, âl, andâ′lin eq 16
with λ′p, µp, â′p, andâp, respectively.

III. Applications

A. Model System. In the previous section, we have derived
an expression for the absorption spectra of a molecular system
consisting ofNd modes exhibiting the Duschinsky effect. It is
instructive to investigate the role of mode mixing for a model
system with two mixing modes. We set a model for the
Duschinsky matrix elements,

By using the fast Fourier transform algorithm for numerical
calculation, we can study the Duschinsky effect and temperature
effect on the two-mode mixing system.

Figure 1 shows the effect of mode mixing on the absorption
spectra of a distorted and rotated system. The right and left
panels show the calculated absorption spectra at 0 and 500 K,
respectively. In each panel, the top, middle, and bottom panels
demonstrate the absorption spectra as a function ofæ. For these
calculations, we use several parameters:pω1 ) 3001 cm-1,
pω2 ) 850 cm-1, pωa1 ) 3027 cm-1, pωa2 ) 977 cm-1, ∆Q1

) ∆Q2 ) 0 Å amu1/2. For simplicity, we translate the 0-0
transition energy to 5000 cm-1. We use the fast Fourier
transform algorithm with 262 144 points to generate the
correlation function eq 4. The frequency resolution is set to be
2 cm-1, and we employ 2 cm-1 as a convergence factor. This
factor does not influence the results, since its value is only 0.26%
of the lowest vibrational frequency of this system.

One can see from Figure 1 that the absorption spectra do not
depend on the sign ofæ in the case in which the system has

only distorted and rotated harmonic potential surfaces. This
feature can easily be seen from eqs B3, B4, B6, and B7. We
find that the signs of Duschinsky matrix elements depend only
on eq B4. In the case of∆Q1 ) ∆Q2 ) 0, eq B4 becomes 0 so
that no sign dependence can be observed.

The absorption spectra will exhibit a strong sign dependence
in the case in which∆Q1 * 0 andQ2 * 0, that is, once the
potential is displaced. Figure 2 demonstrates the absorption
spectra of a system consisting of displaced-distorted-rotated
harmonic potentials. For these calculations, we use the same
parameters except for the displacements:∆Q1 ) 0.449 Å amu1/2

and∆Q2 ) 1.321 Å amu1/2. From Figure 2, one can see a strong
sign dependence of the calculated absorption spectra. We should
note here that compared with theæ ) 0 case, in the negative
sign case the calculated absorption spectra become broader
toward the high-energy region but there is no significant change
in the lower energy region. On the other hand, the positive sign
case shows drastic broadening toward both lower and higher
energy regions.

B. Real Molecular Systems.π-π* electronic transitions in
small organic molecules represent an important example of the
systems where the Duschinsky rotation between the ground and
excited electronic states is extremely large. In this paper, we
consider two molecules, ethylene (C2H4) and allene (C3H4), but
a similar behavior can be also expected for their substituted
analogues and for other linear unsaturated hydrocarbons with
π bonds. Vibronic spectra of ethylene in the region of 6-8 eV
have been a subject of numerous experimental76-78 and
theoretical63,64,79-87 studies. The traditional assignment attributes
the broad featureless underlying continuum in the spectra to
the π-π* excitation to a1B1u state. This continuum spreads
from the energies below 50 000 cm-1 to at least 70 000 cm-1.
The absorption bands corresponding to theπ-π* transition in
allene have a similar weak, broad, and featureless character.76,88-90

A weak absorption starts at∼38 000 cm-1 and spreads to 52 000
cm-1 with eventual increase of intensity. For allene, two
symmetry-forbidden1A2 r 1A1 and1B1 r 1A1 π-π* transitions
can contribute through an intensity-borrowing mechanism from
the allowed1E r 1A1 (π-3s) and1B2 r 1A1 (π-π*) transitions.
Interestingly, recent [2+ 1] REMPI measurements of two-
photon absorption spectra of allene91 show the presence of the
underlying continuum band at energies as high as 60000-75000
cm-1. Let us consider now what can make theπ-π* absorption
spectra in ethylene and allene so broad and continuous and what
the role of the Duschinsky effect is.

Theoretical 1B1u r 1Ag (π-π*) Absorption Spectra of
Ethylene. It is well-known that the1B1u (π-π*) excited state
of C2H4 is stabilized by D2 torsion according to the Walsh
rules.92 As a result, geometry optimization of this state at the
CIS/6-311(2+)G* and CASSCF/6-311(2+)G* levels with active
spaces from (2,11) to (10,15)63 gives a 90° twisted structure of
D2d symmetry (see Figure 3). This result is in agreement with
previous findings by other authors.79,83,84Thus, the geometry
change from the ground to excited state is very large. According
to our calculations at the MRCI/ANO(2+) level,64 the difference
between the adiabatic (5.45 eV) and vertical (8.13 eV) excitation
energies reaches∼2.7 eV. Vibrational frequencies calculated
at the CASSCF and CIS levels63,64 for the ground and excited
states, respectively, are shown in Table 1. Within theD2

symmetry group common for all the states, the normal modes
include four modes of “a” symmetry (ν1 - ν4), two modes of
b3 symmetry (ν5, ν6), three modes of b1 symmetry (ν7 - ν9),
and three modes of b2 symmetry (ν10 - ν12). Table 2 shows
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mass-weighted normal coordinates|L| for the ground state.
Graphical presentation of all normal modes was given earlier.63

In the π-π* state, several modes change frequencies signifi-
cantly compared to the ground state, for instance, C-C
stretching coupled with HCH scissoring (ν2, 1580 f 1398
cm-1), CH2 twisting (ν4, 977f 855 cm-1), CCH bending (ν8,
1205 f 912 cm-1), CH2 wagging (ν9, 860 f 661 cm-1),
asymmetric CH stretching (ν10, 3059f 2841 cm-1), and CCH

bending (ν12, 795 f 661 cm-1). Only symmetric “a” modes
are displaced;∆Q values are large and the largest of them, 1.27
Å amu1/2, is calculated for CH2 twisting, ν4, because in the
π-π* state the molecule is twisted by 90°. The calculation of
the Huang-Rhys factorsS, S) (1/2)(ω/p)(∆Q)2, for theν1 - ν4

modes gives values of 7.45, 4.94, 1.55, and 22.49, respectively.
Additionally, the normal coordinates are mixed, as seen from
the rotational Duschinsky matrix|C| (Table 3). The rotated

Figure 1. Effect of mode mixing on the absorption spectra of a distorted and rotated system. The right and left panels show the calculated absorption
spectra at 0 and 500 K, respectively. In each panel, the top, middle, and bottom panels demonstrate the absorption spectra as a function ofæ.
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normal modes of “a” symmetry (inD2) for the ground and
excited states are illustrated in Figure 4.

Now we use these data to compute the temperature depen-
dence of the absorption spectrum for1B1u r 1Ag (π-π*) of
ethylene using our newly developed formalism. For this purpose,
we develop an analytic expression for the computation of eq 9
for a two-mode mixing case (see Appendixes A and B). From
Table 3, one can see that theQ1 and Q4 modes are strongly
mixed with theQ′1 andQ′4 modes. For simplicity, we assume

that only these two modes are mixed and that the rest are not
mixed. In this case, the rotational Duschinsky matrix|C| can
be approximated by a 2× 2 matrix

For computation, we use the fast Fourier transform algorithm
with 262 144 points to generate the correlation function eq 4.

Figure 2. Calculated absorption spectra for a model system consisting of two displaced-distorted-rotated harmonic potentials.

(0.7937 0.6083
-0.6083 0.7937)
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The frequency resolution is set to be 1 cm-1, and we employ 1
cm-1 as a convergence factor. This factor does not influence
the results, since its value is only 0.15% of the lowest vibrational
frequency of this system.

The upper and lower panels in Figure 5 show an overview
of the absorption spectra of ethylene at 0 and 500 K calculated
using eqs B3 and C1. The upper and lower panels on the left
side of Figure 6 show the calculated absorption spectra of
ethylene at 0 and 500 K in the spectral region of 46000-57000
cm-1. In the upper panel, one can see obvious vibronic structure
with energy spacing of 855 cm-1. This structure arises from
the CH2 twisting mode. One can also see that the vibronic
structure starts from about 47 300 cm-1 . New peaks appear at
energy lower than 47 300 cm-1 in the case of 500 K. These
peaks are due to the thermal populations of the vibrational levels
of the ground electronic state.

For comparison, we also demonstrate absorption spectra
without the Duschinsky effect and they are shown in the upper
and lower panels on the right side of Figure 6. From Figure 6,
one can see that the vibronic structure and the temperature effect
are very different from transitions with the Duschinsky effect.

Figure 7 shows a comparison of the calculated spectrum with
the observed spectrum of1B1u r 1Ag (π-π*) absorption spectra
of ethylene.77 One can see a good agreement in the vibronic
structures between the calculated and observed spectra. Thus,
our study supports the assignment of the underlying continuum
in the ethylene absorption spectra to the1B1u r 1Ag (π-π*)
electronic transition and does not confirm the suggestion by
Ryu and Hudson87 that the continuum band also involves the

1B1g r 1Ag (π-3py) transition. Also, the band is assigned in
terms of four normal modesQ1 - Q4 of “a” symmetry (in the
D2 group), which is against the hypothesis of Siebrand et al.82

who additionally invoked for the assignment a nonsymmetric
b2g normal mode (CH2 wagging) active in intensity borrowing
from the1B3u (π-3s) state. Our calculations demonstrate that
only a small fraction (∼9.1%) of the total intensity for theπ-π*
transition corresponds to the 6-8 eV energy region. This
explains an apparent contradiction between the calculated
oscillator strengths forπ-π* (0.36 at the EOM-CCSD level)64

andπ-3s (0.08) and experimental absorption spectra where the
distinct peaks due toπ-3s are more intense than the underlying
continuum.

Theoretical 1B1u f 1A1g Internal Conversion Rate Con-
stant of Ethylene. Now we calculate the internal conversion
(IC) rate constant of the nonradiative transition1B1u f 1Ag of
ethylene. In this case, there exist two promoting modes,Q5 and
Q6, and the electronic coupling constants associated with these
modes are given by 0.0038 Å-1 amu-1/2 and 0.072 Å-1 amu-1/2,
respectively.30 To calculate the internal conversion rate, we use
eqs 19, B3, C1, and D1 with the 2× 2 rotational Duschinsky
matrix

Figure 8 shows the calculated temperature dependence of the
internal conversion rate constants of the nonradiative transition
1B1u f 1Ag of ethylene. One can see in Figure 8 that the IC
rate constants show a moderate temperature dependence in the
temperature range 0-1500 K.

In a previous study, we reported the IC rate constants for
these two modes at 0 K using only displaced potential surfaces
for the promoting modes, and they were 7.39× 106 s-1(Q5)
and 1.26× 109 s-1 (Q6).30 In this present work, displaced-
distorted potential surfaces for the promoting modes have been
used.

Theoretical 1B1 r 1A1 (π-π*) Absorption Spectra of
Allene. Earlier,68 we carried out ab initio calculations of the
ground and excited states of allene, where the geometries were
optimized at the CASSCF/6-311+G** and density func-
tional93,94B3LYP/6-311G** levels and the energies were refined
using the MRCI/ANO(2+) approach. In allene, the ground
electronic state hasD2d symmetry (see Figure 3); so two CH2

groups are twisted with respect to each other by 90°. The excited
π-π* 1B1 (D2d) state is stabilized byD2 torsion according to
the Walsh rules.92,95,96The doubly occupied 2e and virtual 3e*
MOs in D2d symmetry split into in-planeσ and out-of-planeπ
components, with the energies and symmetries such that b3u(π)
< b2g(π) < b2u(σ*) < b3u(π*) for the D2d f D2 f D2h

transformation. On the basis of Walsh’s rules, theσ* A u state
(b2g(π)b2u(σ*)) is the stabilized form of the B1 Franck-Condon
state. However, as shown by MRCI calculations,68 because B1
collapses to the totally symmetric representation (A) at inter-
mediate D2 geometries, the ground state (11A1) ultimately
correlates with the open-shell1Au state and the excited1B1 state
with the closed-shell excited state (1b3u)2(1b2g)2 1Ag. Thus,1Ag

is the first excited state at theD2h geometry68,97 (Figure 3).
Except for the CH2 twisting, the other geometric changes from
1A1 (D2d) to 1Ag (D2h) are minor. According to MRCI calcula-
tions, the adiabatic excitation energy for S1 is only 3.02 eV
(24 342 cm-1), about 3 eV lower than the vertical excitation
energies for1A2 (6.10 eV) and1B1 (6.55 eV) atD2d symmetry.68

Scaled98 vibrational frequencies for the ground1A1 (D2d) and
excited1Ag (D2h) electronic states calculated at the B3LYP/6-

Figure 3. Optimized geometries of ethylene (ref 63) and allene (ref
68) in the ground andπ-π* excited electronic states.

TABLE 1: Vibrational Frequencies (cm-1) of C2H4 in the
Ground and Excited Statesa

assignment 1Ag (D2h) 1B2 (D2h)
symmetry

in D2

ν1 CH stretch ag 2979 a1 2828 a
ν2 CC stretch ag 1580 a1 1398 a
ν3 CH2 scissors ag 1286 a1 1227 a
ν4 CH2 twisting au 977 b1 855 a
ν5 CH stretch b1u 2960 b2 2798 b1
ν6 CH2 scissors b1u 1435 b2 1274 b1
ν7 CH stretch b3g 3032 e 2841 b3
ν8 CCH bend b3g 1205 e 912 b3
ν9 CH2 wagging b3u 860 e 661 b3
ν10CH stretch b2u 3059 e 2841 b2
ν11CH2 wagging b2g 813 e 912 b2
ν12CCH bend b2u 795 e 661 b2

a Calculated at the RHF/6-311(2+)G* and CIS/6-311(2+)G* levels,
respectively, and scaled by 0.9 (from ref 63).

(0.7937 -0.6083
0.6083 0.7937 )
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311G** level are presented in Table 4, and a numerical
presentation of the normal modes in terms of displacements of
Cartesian coordinates is given in Table 5. All normal modes
for the ground electronic state are shown in Figure 9a and the
rotated normal modes of “a” symmetry (within theD2 group)
for the excited state are illustrated in Figure 9b.

Our density functional calculation shows a significant distor-
tion of normal modes (frequency change) from the ground to
the excited state. The frequenciesν12 andν13 corresponding to
out-of-plane CH2 wagging decrease in1Ag from 833 to 148 and
102 cm-1. While the b2 component of the CH2 in-plane wagging
frequencyν10-11 remains almost unchanged, the corresponding
b3 frequency decreases from 978 to 490 cm-1 in the excited
state. For the CCH bending frequencyν14-15, the b3 component
increases from 357 to 502 cm-1 and the b2 component decreases
by about 60 cm-1. The CH2 symmetric scissoringν2, CC
asymmetric stretchν6, and CH2 asymmetric scissoringν7

decrease their frequencies in1Ag by ∼150 cm-1. The normal
mode displacement occurs only for the modesQ1-Q4, which
belong to the totally symmetric irreducible representation “a”
of the symmetry groupD2, common for the ground and excited-
state geometries. In general, the displacements are similar to
those found in ethylene (see Table 3 for comparison). The mode
Q4 corresponding to CH2 is displaced to the greatest extent (∆Q4

) 1.321 Å amu1/2). It is followed by symmetric CH stretching

TABLE 2: Normal Modes of C2H4 in the Ground Statea

mode
sym

Q12
b2u

Q9
b3u

Q11
b2g

Q4
au

Q8
b3g

Q3
ag

Q6
b1u

Q2
ag

Q5
b1u

Q1
ag

Q7
b3g

Q10
b2u

C1, x 0.00 0.27 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y -0.13 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 -0.23 0.23
z 0.00 0.00 0.00 0.00 0.00 0.33 0.23 0.59 0.14 -0.19 0.00 0.00

C2, x 0.00 0.27 -0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y -0.13 0.00 0.00 0.00 -0.43 0.00 0.00 0.00 0.00 0.00 0.23 0.23
z 0.00 0.00 0.00 0.00 0.00 -0.33 0.23 -0.59 0.14 0.19 0.00 0.00

H1, x 0.00 -0.46 -0.40 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.23 0.00 0.00 0.00 -0.11 -0.17 0.27 0.23 -0.42 0.41 0.40 -0.40
z -0.43 0.00 0.00 0.00 0.38 0.41 -0.39 -0.15 -0.25 0.25 0.25 -0.25

H2, x 0.00 -0.46 -0.40 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.23 0.00 0.00 0.00 -0.11 0.17 -0.27 -0.23 0.42 -0.41 0.40 -0.40
z 0.43 0.00 0.00 0.00 -0.38 0.41 -0.39 -0.15 -0.25 0.25 -0.25 0.25

H3, x 0.00 -0.46 0.40 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.23 0.00 0.00 0.00 0.11 -0.17 -0.27 0.23 0.42 0.41 -0.40 -0.40
z 0.43 0.00 0.00 0.00 0.38 -0.41 -0.39 0.15 -0.25 -0.25 0.25 0.25

H4, x 0.00 -0.46 0.40 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.23 0.00 0.00 0.00 0.11 0.17 0.27 -0.23 -0.42 -0.41 -0.40 -0.40
z -0.43 0.00 0.00 0.00 -0.38 -0.41 -0.39 0.15 -0.25 -0.25 -0.25 -0.25

a From ref 63.

TABLE 3: Duschinsky Matrix and Normal Mode
Displacements∆Q (in Å amu1/2) for the 1B2-1Ag Transition
in C2H4

Q1 Q2 Q3 Q4

Q1′ 0.7977 -0.1467 -0.0027 0.5780
Q2′ 0.0887 -0.8622 -0.3802 -0.3153
Q3′ -0.1024 0.2951 -0.9156 0.2364
Q4′ -0.5850 -0.3823 0.1259 0.7195
∆Q 0.416 0.469 0.286 1.273

Figure 4. Normal modes of ethylene in the ground (D2h,1Ag) and
excited (D2d,1B2) electronic states participating in the Duschinsky
rotation.

Figure 5. Overview of the absorption spectra calculated for1B1u r
1Ag (π-π*). The upper and lower panels show the calculated absorption
spectra at 0 and 500 K, respectively.
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Q1 (∆Q1 ) 0.449 Å amu1/2) and symmetric CH2 scissoringQ2

(∆Q2 ) 0.267 Å amu1/2).
Significant mode mixing is also found (Table 6). The

Duschinsky matrix for theQ1-Q4 normal modes is similar to
that for ethylene, except the mixing ofQ2 and especiallyQ3

with the other normal coordinates is less pronounced. Only
modesQ1 (CH stretch) andQ4 (CH2 twisting) are heavily mixed
with each other. In symmetry b1 there is some rotation ofQ5

(CH stretch) andQ7 (CH2 asymmetric scissoring), whileQ6 (CC
asymmetric stretch) is not mixed with other modes. In sym-

metries b2 and b3, the CH asymmetric stretchQ8-9 mixes with
CH2 out-of-plane waggingQ12-13 and, to a lesser extent, with
CH2 in-plane waggingQ10-11. The CCH bending modesQ14-15

remain essentially unmixed with other normal coordinates. The
Duschinsky matrices for symmetries a, b2, and b3 (parts a, c,
and d of Table 6, respectively) as well as that for ethylene (Table
3) are unitary; the sum of squares for each row and column is
equal to unity. On the other hand, the Duschinsky matrix for b1

is not unitary; the sum of squares for the first row and the first
column is substantially less than 1. At this point, we do not
completely understand this result. A reason for it can be a mixing
of vibrational normal coordinates in the ground state with
rotational normal coordinates of the excited state. For instance,
the mode corresponding to rotation around theZ axis (CCC)
has symmetry b1g in the excited state (D2h) and a2 in the ground
state (D2d), which correspond to b1 in the commonD2 point
group. This rotational mode can mix with vibrational normal
modes of b1 symmetry in the other electronic state. To our-

Figure 6. Comparison between mixing and no-mixing cases. The upper and lower panels of the left side show the calculated absorption spectra
of ethylene at 0 and 500 K in the spectral region of 46000-57000 cm-1, respectively. The two panels on the right side show the corresponding
spectra without mixing.

Figure 7. Comparison of the calculated spectrum with the observed
1B1u r 1Ag (π-π*) absorption spectrum of ethylene. The calculated
and the observed spectra are shown in the lower and upper panels,
respectively. The observed spectrum is taken from ref 77.

Figure 8. Temperature dependence of internal conversion rate constants
of the nonradiative transition1B1u f 1Ag of ethylene. The dotted and
the solid lines depict the IC rate constants for the promoting modesQ6

andQ5, respectively.
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knowledge, such an interesting vibrational-rotational Duschin-
sky effect was not reported before, although the rotational
Duschinsky effect is known,32 and requires further investigation.

At this stage we use the calculated normal mode displace-
ments, distortions, and rotations to compute the absorption
spectra for allene. Although at the B3LYP level we find a large
distortion effect in the frequencyν4, this distortion effect is not
reasonable. This is due to the fact that the DFT method failed
for this particular vibrational mode. Thus, we recalculated this
vibrational frequency numerically at the ab initio CASSCF/6-
311+G** level and obtained the value of 879 cm-1 used for
the calculation of the absorption spectra of1B1 r 1A1 (π-π*).

We are now in a position to compute the temperature
dependence of the absorption spectrum for the1B1 r 1A1 (π-
π*) transition of allene. From Table 6, one can see that the
Q1andQ4 modes are strongly mixed with theQ′1 andQ′4 modes
in group a, theQ′5 andQ′7 modes are strongly mixed with the
Q′5 andQ′7 modes in group b, theQ′8 andQ′13 modes are strongly
mixed with theQ′8 andQ′13 modes in group c, and theQ′9 and
Q′12 modes are strongly mixed with theQ′9 andQ′12 modes in
group d. For simplicity, we assume that only these modes are
mixed and that the rest are not mixed. In this case, the rotational
Duschinsky matrix|C| can be approximated by 2× 2 matrices

and

respectively.
Figure 10 compares the calculated absorption spectra with

and without mode mixing of1B1 r 1A1 (π-π*) of allene. For
the allene case, we cannot see the drastic change in the lower
energy region of the absorption spectra, as can be seen in the
ethylene case, but the spectrum becomes broader toward the
higher energy region because of the Duschinsky effect. This
feature can be explained by referring to the model calculation

mentioned in the previous section. Note that only the modes in
group a have displacements and the rest do not and that the 2
× 2 matrix for group a has the opposite sign compared with
the ethylene case. It should be noted that one must be careful
in determining the sign of Duschinsky matrix elements.

Theoretical 1B1 f 1A1 Internal Conversion Rate Constant
of Allene. It is instructive to investigate the temperature
dependence of the internal conversion rate of the nonradiative
transition1B1 f 1A1 of allene. For this calculation, we shall
adopt the CC asymmetric stretch modeQ6 as a promoting mode.
The rotational Duschinsky matrix|C| for this calculation can
be given by a 2× 2 matrices

and

for groups a, b, c, and d, respectively.
Figure 11 shows the calculated temperature dependence of

the internal conversion rate constants for the nonradiative
transition 1B1 f 1A1 of allene. These rate constants are
normalized to the IC rate constant for the no-mixing case atT
) 0 K. Although our ab initio calculations show (see Table 4)
that allene has large frequency changes in groups c and d, these
modes are only distorted-rotated. As already seen in the model
calculations, the distortion effect alone cannot broaden the
Franck-Condon factor distribution.

III. Conclusion

In this paper, we have described the important role of the
Duschinsky effect for absorption spectra and radiationless
transitions in polyatomic molecules. We demonstrated that this
role can be analyzed through ab initio calculations of potential
energy surfaces for the ground and excited electronic states.
We have presented analytical expressions for calculating
absorption coefficients and radiationless transitions that involve
the Duschinsky effect. This effect is expected to be important
for π-π* transitions for small and intermediate size molecules.
In this paper, to demonstrate the importance of this effect, we
have chosen ethylene and allene as examples. We have shown
that in absorption spectroscopy the Duschinsky effect will, under
certain conditions, introduce a significant broadening of the
electronic spectra. The Duschinsky effect will also increase the
rate of radiationless transitions.

It should be noted that intramolecular vibrational redistribu-
tion (IVR) can also cause broadening of FC bright states. This
broadening is usually involved in the transient absorption or
spontaneous and stimulated emission spectra of isolated (i.e.,
collision-free) molecules. For example, IVR can be observed
in an isolated molecule by optical excitation using a UV laser
to a high vibronic state (or states); IVR will take place by
anharmonic coupling (and/or Coriolis coupling) in the excited
electronic state. In this case, if the transient absorption (or
emission) experiment is performed, then one can observe the
transient spectral broadening due to IVR. On the other hand,
when the excited molecule goes through internal conversion to
the ground electronic state, the molecule will be highly

TABLE 4: Vibrational Frequencies (cm-1) of Allene in the
Ground and Excited States Calculated at the B3LYP/
6-311G** Levela

assignment 1A1 (D2d)a 1Ag (D2h)
symmetry

in D2

ν1 CH sym stretch a1 3001 (2993) ag 3027 a
ν2 CH2 sym sciss. a1 1423 (1432) ag 1270 a
ν3 CC sym stretch a1 1066 (1071) ag 1009 a
ν4 CH2 twisting b1 850 (820) au 879b a
ν5 CH stretch b2 2997 (2960) b1u 3024 b1
ν6 CC asym stretch b2 1974 (1980) b1u 1823 b1
ν7 CH2 asym sciss b2 1368 (1389) b1u 1210 b1
ν8-9 CH asym stretch e 3069 (3061) b2u 3096 b2

b3g 3094 b3
ν10-11 CH2 in-plane wagging e 978 (1031) b2u 966 b2

b3g 490 b3
ν12-13CH2 out-of-plane wagging e 833 (838) b3u 148 b3

b2g 102 b2
ν14-15CCH bend e 357 (353) b3u 502 b3

b2u 291 b2

a Scaled by 0.9614 (ref 98). In parentheses are the experimental
frequencies from ref 89.b This value is calculated at the CASSCF/6-
311+G** level.

(0.75075 -0.5924
0.5924 0.75075)

(0.8582 0.1398
-0.1398 0.8582)

(0.7489 -0.6011
0.6011 0.7489 )

(0.7407 -0.5994
0.5994 0.7407 )

(0.75075 0.5924
-0.5924 0.75075)
(0.8582 0.1398
-0.1398 0.8582)

(0.7489 0.6011
-0.6011 0.7489)

(0.7407 0.5994
-0.5994 0.7407)
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vibrationally excited; IVR can also take place in the ground
electronic state, and again, the transient spectral broadening can
be observed. In this paper, we are concerned with the absorption

spectra originating from the ground electronic state. Since the
Boltzmann average is included in the absorption coefficient [see
eq 11], it means that collisions do exist to maintain vibrational
equilibrium, and the spectral broadening due to IVR does not
have any contribution in this case.

A main purpose of this paper is to show how the experimental
results of spectroscopy and dynamics of molecules can be
analyzed by ab initio calculations. It should be emphasized that
the performance of ab initio methods in producing detailed
features of potential energy surfaces can be checked from the
measurements of high-resolution spectroscopy and single-
vibronic-level lifetimes. In other words, rapid progress in the
understanding of photophysical properties and photophysical
processes can be made when ab initio calculations of photo-
physical properties and processes are carried out in the analysis
of the experimental results. In particular, one of the most
important physical properties of the molecule is its degrees of
freedom of nuclear motion. Because of this property, the
absorption spectra of molecules exhibit structures. Radiationless

TABLE 5: Normal Modes of Allene in the Ground State

mode
sym

Q1
a1

Q2
a1

Q3
a1

Q4
b1

Q5
b2

Q6
b2

Q7
b2

Q8
e

Q9
e

Q10
e

Q11
e

Q12
e

Q13
e

Q14
e

Q15
e

C1, x 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.16-0.20 -0.26 -0.24 0.27 0.07 -0.24
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.16-0.26 -0.20 0.27 -0.24 -0.24 0.07
z -0.17 0.40 0.56 0.00 0.17 -0.39 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C2, x 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.09 0.00 0.00 0.73
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.09 0.73 0.00
z 0.00 0.00 0.00 0.00 -0.03 0.82 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C3, x 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.16 0.16 0.20 -0.26 -0.24 -0.27 -0.07 -0.24
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16-0.16 -0.26 0.20 -0.27 -0.24 -0.24 -0.07
z 0.17 -0.40 -0.56 0.00 0.17 -0.39 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

H1, x 0.30 0.18 -0.05 0.35 -0.30 -0.05 0.18 -0.28 -0.28 0.11 0.09 0.30 -0.30 -0.02 -0.21
y 0.30 0.18 -0.05 -0.35 -0.30 -0.05 0.18 -0.28 -0.28 0.09 0.11 -0.30 0.30 -0.21 -0.02
z 0.25 -0.32 0.30 0.00 -0.25 -0.04 -0.40 -0.25 -0.25 -0.37 -0.37 0.01 0.01 0.20 0.20

H2, x -0.30 -0.18 0.05 -0.35 0.30 0.05 -0.18 -0.28 -0.28 0.11 0.09 0.30 -0.30 -0.02 -0.21
y -0.30 -0.18 0.05 0.35 0.30 0.05 -0.18 -0.28 -0.28 0.09 0.11 -0.30 0.30 -0.21 -0.02
z 0.25 -0.32 0.30 0.00 -0.25 -0.04 -0.40 0.25 0.25 0.37 0.37 -0.01 -0.01 -0.20 -0.20

H3, x -0.30 -0.18 0.05 -0.35 -0.30 -0.05 0.18 0.28 -0.28 -0.11 0.09 0.30 0.30 0.02 -0.21
y 0.30 0.18 -0.05 -0.35 0.30 0.05 -0.18 -0.28 0.28 0.09 -0.11 0.30 0.30 -0.21 0.02
z -0.25 0.32 -0.30 0.00 -0.25 -0.04 -0.40 0.25 -0.25 0.37 -0.37 0.01 -0.01 -0.20 0.20

H4, x 0.30 0.18 -0.05 0.35 0.30 0.05 -0.18 0.28 -0.28 -0.11 0.09 0.30 0.30 0.02 -0.21
y -0.30 -0.18 0.05 0.35 -0.30 -0.05 0.18 -0.28 0.28 0.09 -0.11 0.30 0.30 -0.21 0.02
z -0.25 0.32 -0.30 0.00 -0.25 -0.04 -0.40 -0.25 0.25 -0.37 0.37 -0.01 0.01 0.20 -0.20

Figure 9. (a) Normal modes of allene in the ground electronic state
(D2d,1A1). (b) Normal modes of ag and au symmetries in the excited
electronic state of allene (D2h,1A1g) mixing with the a1 and b1 normal
modes in the ground state.

TABLE 6: Duschinsky Matrices and Normal Mode
Displacements∆Q (in Å amu1/2) for the 1Ag-1A1 Transition
in Allene

(a) Normal Modes of Symmetry “a” (D2)

Q1 Q2 Q3 Q4

Q1′ 0.7944 -0.1382 0.0250 -0.5936
Q2′ -0.1333 0.9184 0.1084 -0.3644
Q3′ 0.0365 -0.0642 0.9878 0.1309
Q4′ 0.5912 0.3673 0.0906 0.7071
∆Q 0.449 0.267 0.085 1.321

(b) Normal Modes of Symmetry b1 (D2)

Q5 Q6 Q7

Q5′ 0.7947 -0.0440 0.1379
Q6′ -0.0397 0.9944 0.0225
Q7′ 0.1417 0.0127 0.9217

(c) Normal Modes of Symmetry b2 (D2)

Q8 Q10 Q13 Q15

Q8′ 0.7831 0.1166 -0.6001 0.0145
Q10′ -0.0711 -0.8623 -0.3068 -0.3913
Q13′ 0.6021 -0.3419 0.7147 0.0809
Q15′ -0.1063 -0.3346 -0.1866 0.9130

(d) Normal Modes of Symmetry b3 (D2)

Q9 Q11 Q12 Q14

Q9′ -0.7831 -0.1036 -0.5961 0.1476
Q11′ -0.1077 -0.8134 0.4038 0.3889
Q12′ 0.6027 -0.3708 -0.6983 0.1294
Q14′ 0.0815 0.4343 0.0287 0.8966
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transitions can take place also because of the coupling between
electronic and nuclear motions. We emphasize here that the
vibrational information provided by ab initio calculations is as
important as electronic information. For example, as already
seen in this work, a few large displacements and rotations of
the relevant potential surfaces become extremely important for
the absorption spectra and the rate constants of radiationless
transitions. With vibrational information, to analyze the observed
results, one can theoretically construct the structure of absorption
spectra and/or calculate the rate constants of radiationless
transitions as a function of energy. This, in turn, encourages
theoreticians to fine-tune ab initio calculation methods for the
potential energy surfaces and thus for the molecular structures
of electronically excited states or even cations and anions.
Furthermore, ab initio calculations can also help us understand
the photodissociation of molecules, especially for the case in
which the electronically excited molecule (due to, say, optical
absorption) goes through radiationless transitions to the ground
electronic state where the hot molecule decomposes.
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Appendix A

In this appendix, we shall derive expressions for the correla-
tion functionG(t) for several cases. First, let us consider a two-
mixing-mode case in which only modes 1 and 2 exhibit the
Duschinsky effect. In this case,

where

and

Applying the Slater sum to eq A3 leads to

Figure 10. Calculated absorption spectra with and without mode mixing of1B1 r 1A1 (π-π*) of allene. The upper and lower panels show the
calculated spectra with and without mode mixing. The spectra shown in the left and right panels are calculated forT ) 0 andT ) 500 K, respectively.

Figure 11. Temperature dependence of internal conversion rate
constants of the nonradiative transition1B1 f 1A1 of allene. The dashed
and solid lines denote the calculated IC rate constants for mixing and
no-mixing cases, respectively. The IC rate constants are normalized
with the IC rate constant for the no-mixing case atT ) 0 K.
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where λ1 ) itω1 + pω1/(kT), λ2 ) itω2 + pω2/(kT), µ′R1 )
-itω′R1, µ′R2 ) -itω′R2, and

and

We rewrite eq A4 as

where

and

It follows that

For the three-mixing-mode case, we find

where
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and

Similarly, for the four mixing-mode case, we have

where

and

Appendix B

In this appendix, we shall briefly derive an alternative
expression of eq A12 convenient for the numerical computation.
By defining

and

we find99
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and
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Appendix C

In this appendix, we shall show an alternative expression of
eq 16 convenient for the numerical computation. Applying eqs
B1, B2, and B5 to eq 16 leads to99

where

and

From eq C1, it is easy to see two simple cases, i.e., the
displaced harmonic potential surface caseâl ) â′l and∆Ql * 0
and the distorted harmonic potential surface caseâl * â′l and
∆Ql ) 0. For the displaced and distorted harmonic potential
surface cases, the correlation functionsGl(t) become

and

respectively. Here, in eq C4,Sl ) âl(∆Ql)2/2 denotes the
Huang-Rhys factor and

Appendix D

In this appendix, we shall obtain an alternative expression
of eq 21 convenient for the numerical computation. Applying
eqs B1, B2, and C2 to eq 21 yields99

whereg-(n′l) andg+(n′l) are given by eq B1 andf+ and f- are
given by eq C2. In the case in which the promoting mode is
not displaced-distorted, eq D1 becomes

In the low-temperature limit, i.e.,pωl . kT or n′l ) 0, we have
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